|
||||||||||
|
Защита бетонных и железобетонных конструкций от коррозии. Методы испытанийГОСТ 31383-2008 МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ ЗАЩИТА БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ ОТ КОРРОЗИИ Методы испытаний Protection against corrosion of concrete and reinforced concrete constructions. Test methods МКС 91.120.99 Дата введения 2010-07-01 Предисловие Цели, основные принципы и основной порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и МСН 1.01-01-96 "Система межгосударственных нормативных документов в строительстве. Основные положения" 1 РАЗРАБОТАН Научно-исследовательским, проектно-конструкторским и технологическим институтом бетона и железобетона "НИИЖБ" - филиалом Федерального государственного унитарного предприятия "Научно-исследовательский центр "Строительство" 2 ВНЕСЕН Техническим комитетом по стандартизации ТК 465 "Строительство" 3 ПРИНЯТ Межгосударственной научно-технической комиссией по стандартизации, техническому нормированию и сертификации в строительстве (МНТКС) (протокол N 34 от 10 декабря 2008 г.)
4 Приказом Федерального агентства по техническому регулированию и метрологии от 15 декабря 2009 г. N 891-ст межгосударственный стандарт ГОСТ 31383-2008 введен в действие непосредственно в качестве национального стандарта Российской Федерации с 1 июля 2010 г. 5 ВВЕДЕН ВПЕРВЫЕ 1 Область применения 1 Область применения Настоящий стандарт устанавливает методы определения и испытаний коррозионной стойкости тяжелых и легких бетонов плотного строения по ГОСТ 25192, в том числе мелкозернистых бетонов на вяжущих на основе портландцементного клинкера по ГОСТ 10178, ГОСТ 22266, ГОСТ 30515, ГОСТ 31108 (далее - бетонов), стальной арматуры и защитных покрытий. 2 Нормативные ссылкиВ настоящем стандарте использованы нормативные ссылки на следующие стандарты: 3 Термины и определенияВ настоящем стандарте применены следующие термины с соответствующими определениями: 3.1 адгезия (прочность сцепления): Совокупность сил, связывающих покрытие с окрашиваемой поверхностью. 3.2 действие бетона пассивирующее: Действие бетона на стальную арматуру, в результате которого сталь переходит в пассивное состояние, коррозия практически отсутствует. 3.3 диффузионная проницаемость: Проницаемость бетона для вещества в отсутствие градиента давления при наличии разности концентраций, вызванная диффузией вещества. 3.4 защитные покрытия: Покрытия, создаваемые на поверхности бетона или арматуры для защиты от коррозии. 3.5 коррозионное растрескивание: Коррозия арматуры при одновременном воздействии коррозионной среды и растягивающих напряжений с образованием трещин в металле. 3.6 коррозия арматуры: Разрушение стальной арматуры в результате химического или электрохимического взаимодействия ее с коррозионной средой. 3.7 коррозия бетона: Необратимое ухудшение свойств и характеристик бетона в результате химического, физико-химического или биологического воздействия коррозионной среды или внутренних процессов в бетоне. 3.8 коррозия железобетона: Ухудшение технических характеристик железобетона в результате коррозии бетона и/или арматуры. 3.9 нейтрализация (карбонизация) бетона углекислым газом: Процесс взаимодействия бетона с углекислым газом, в результате которого происходит образование карбоната кальция со снижением рН жидкой фазы бетона и утратой бетоном пассивирующего действия на стальную арматуру. 3.10 пассивное состояние: Состояние металла, при котором скорость анодного процесса сильно ограничена, коррозия практически отсутствует. 3.11 поляризационная кривая: Кривая зависимости скорости электродного (анодного или катодного) процесса от потенциала. 3.12 реакционная емкость бетона: Количество вещества, поглощаемого единицей объема бетона. 3.13 система защитного покрытия: Многослойное покрытие, в котором каждый слой выполняет определенную функцию. 3.14 состояние поставки: Состояние арматурной стали определенного класса, выпущенной производителем и переданной потребителю с сопроводительной документацией. 3.15 трещиностойкость покрытия: Способность защитного покрытия сохранять сплошность при ограниченной деформации защищаемой конструкции. 3.16 эффективный коэффициент диффузии: Коэффициент диффузии вещества в пористом теле бетона, учитывающий влияние пористой структуры и влажности бетона, уплотнения наружного слоя бетона продуктами коррозии. 4 Общие положенияНастоящий стандарт устанавливает следующие методы определений и испытаний коррозионной стойкости бетонов, арматуры и защитных покрытий: 5 Метод определения коррозионной стойкости бетона в растворах кислот5.1 Общие положения 5.2 Сущность метода 5.3 Образцы 5.3.1 Бетонную смесь для образцов готовят согласно заданной рецептуре. 5.3.2 Изготавливают образцы диаметром и высотой 50 или 100 мм. 5.3.3 Изготавливают 12 образцов. Бетонную смесь для образцов готовят согласно заданной рецептуре и технологии исследуемого бетона. Формование образцов выполняют по ГОСТ 10180. 5.3.4 После набора бетоном проектной прочности в условиях твердения, предусмотренных для испытуемого бетона, проводят отбраковку образцов по плотности. Плотность бетона определяют по ГОСТ 12730.1. Отбраковывают образцы, плотность которых отличается от средней более чем на ±50 кг/м, а также образцы, имеющие на поверхности раковины и трещины. Испытывают три образца. 5.3.5 На боковые поверхности образцов наносят грунтовку, шпатлевку и два слоя покрытия из эпоксидного клея общей толщиной не менее 0,3 мм. Грунтовку готовят разбавлением эпоксидного клея ацетоном в соотношении клей - ацетон 1:1. Шпатлевку готовят добавлением в эпоксидный клей портландцемента в соотношении от 1:2 до 1:3. После высушивания покрытия незащищенные торцевые (рабочие) поверхности образцов зачищают наждачной бумагой для удаления следов покрытия и пленки цементного камня. Образцы маркируют. Измеряют площадь рабочих поверхностей. 5.4 Аппаратура и материалы 5.5 Проведение испытаний 5.5.1 Каждый из трех параллельных бетонных образцов устанавливают в отдельный эксикатор. Расстояние между рабочей поверхностью образцов и стенками эксикаторов, а также поверхностью раствора должно быть не менее 2 см. 5.5.2 В эксикаторы заливают раствор кислоты. Отношение объема раствора в кубических сантиметрах к 1 см рабочей поверхности образца должно быть не менее 50:1. Правила приготовления растворов кислот приведены в приложении А. 5.5.3 Перед испытаниями и периодически в процессе испытаний методами кислотно-основного титрования определяют концентрацию кислоты. Непосредственно перед отбором пробы раствор кислоты перемешивают. При уменьшении концентрации кислоты на (5±0,1)% по сравнению с исходной раствор кислоты заменяют новым. 5.5.4 Общая продолжительность испытаний образцов - 6 мес. В первые три недели испытаний пробы раствора кислоты отбирают и титруют ежедневно, затем три раза в неделю, после 3 мес испытаний - два раза в неделю. 5.6 Обработка результатов испытаний 5.6.1 При обработке результатов испытаний определяют количество кислоты, вступившей в химическую реакцию с бетоном, и рассчитывают количество ионов Са, вступивших в химическую реакцию с кислотой. 5.6.2 Количество ионов Са, вступивших в реакцию с кислотой, рассчитывают следующим образом. Устанавливают следующие показатели: 5.6.3 Количество цементного камня (в пересчете на СаО) , вошедшего в химическое взаимодействие с раствором кислоты за период между двумя отборами проб, рассчитывают по формуле , (1)
5.6.4 Общее количество вступившего в химическую реакцию СаО с кислотой определяют суммированием за каждый период испытаний: . (2) 5.6.5 Рассчитывают глубину разрушения бетона : , (3)
5.6.6 По результатам испытаний строят график в координатах . По прямолинейному участку графика определяют константу коррозионного процесса , см/сут как тангенс угла наклона прямой к оси абсцисс на графике. 5.6.7 Глубину коррозионного поражения бетона в проектные сроки службы бетона рассчитывают по формуле , (4)
5.6.8 Статистическая оценка результатов испытаний - по ГОСТ 8.207. 5.7 Протокол испытаний 6 Метод определения диффузионной проницаемости бетона для углекислого газа6.1 Общие положения 6.2 Образцы 6.2.1 Бетонную смесь для образцов готовят согласно заданной рецептуре и технологии исследуемого бетона. 6.2.2 Для испытаний готовят образцы из бетона в форме куба, призмы, цилиндра или пластины, минимальный размер рабочей грани у которых должен быть не менее 7 см, а толщина - не менее 3 см. В качестве рабочей грани используют верхнюю или нижнюю сторону образца, в зависимости от того, на какую сторону проектируемой железобетонной конструкции воздействует агрессивная среда. В отсутствие указаний о проектируемой железобетонной конструкции рабочей гранью считается нижняя грань при формовке образцов. Образцы могут быть изготовлены в форме либо высверлены (выпилены) из бетона конструкции или изделия. 6.2.3 Число основных образцов должно быть не менее 6 шт. и дополнительных образцов - не менее 3 шт. 6.2.4 Бетон образцов твердеет в условиях, предусмотренных для исследуемого бетона в конструкциях. Образцы испытывают после набора бетоном проектной прочности. Момент достижения бетоном проектной прочности устанавливают испытанием дополнительных образцов по ГОСТ 18105. 6.3 Аппаратура и материалы 6.3.1 Для проведения испытаний используют установку с автоматическим поддержанием заданной концентрации углекислого газа (см. рисунок 1). Рисунок 1 -Установка для испытаний бетона в среде углекислого газа
6.3.2 Установка включает в себя следующее оборудование и приборы: 6.3.3 В камере установки должны обеспечиваться следующие параметры среды: концентрация углекислого газа (10±0,5)% по объему, температура (20±5) °С, относительная влажность (75±3)%. 6.3.4 Используют следующие реактивы: 6.4 Проведение испытаний 6.4.1 В установленную в камере ванну заливают насыщенный раствор хлорида натрия и дополнительно насыпают кристаллический хлорид натрия, чтобы часть кристаллов находилась выше уровня раствора. 6.4.2 Образцы устанавливают в камеру на этажерку, закрывают камеру и включают вентилятор. Образцы выдерживают в камере при относительной влажности воздуха (75±3)% и температуре (20±5) °С до установления постоянной массы. Момент установления постоянной массы определяют периодическим взвешиванием (один раз в трое суток). Масса считается постоянной, если между отдельными взвешиваниями она изменяется не более чем на 0,1%. 6.4.3 Включают подачу углекислого газа в камеру и автоматический газоанализатор, устанавливают концентрацию углекислого газа в камере (10±0,5)%. 6.4.4 Образцы выдерживают в камере не менее 7 сут и не более того периода, в течение которого образцы будут нейтрализованы на 1/4 своей толщины. Для этого периодически извлекают из камеры по одному дополнительному образцу и определяют глубину нейтрализации бетона. 6.4.5 По истечении заданного срока образцы раскалывают в направлении, нормальном рабочей грани. Не более чем через ч на поверхность скола со стороны рабочей грани наносят 0,1%-ный раствор фенолфталеина в этиловом спирте. 6.4.6 Мерной линейкой с точностью до 0,1 см в направлении, нормальном поверхности образца, измеряют толщину нейтрализованного слоя бетона, которая равна расстоянию от поверхности образца до слоя, окрашенного раствором фенолфталеина в малиновый цвет. Измерения проводят через 1 см по периметру образца. 6.4.7 Из внешнего нейтрализованного слоя и внутреннего, не подвергшегося нейтрализации, отбирают пробы бетона массой (50±10) г. Число отобранных из каждого слоя проб должно быть не менее трех. Химическим анализом объемным методом по ГОСТ 22688 определяют количество связанного углекислого газа во всех пробах и результаты для каждого слоя усредняют. 6.5 Обработка результатов испытаний 6.5.1 Рассчитывают среднее значение толщины нейтрализованного слоя бетона , см, по формуле , (5)
6.5.2 По результатам химического анализа бетона рассчитывают реакционную емкость бетона в относительных величинах по формуле , (6)
, (7)
6.5.3 Эффективный коэффициент диффузии углекислого газа в бетоне , см/c, рассчитывают по формуле , (8)
6.5.4 Результаты испытаний оценивают по таблице 1.
6.5.5 Статистическая оценка результатов испытаний - по ГОСТ 8.207. 6.6 Протокол испытаний 7 Метод определения диффузионной проницаемости бетона для хлоридов7.1 Общие положения 7.2 Образцы 7.2.1 Готовят восемь образцов из бетона размерами 70х70х210 мм или 100х100х300 мм, в том числе шесть образцов с электродами и два образца без электродов. 7.2.2 Электроды изготавливают из отрезков гладкой арматурной проволоки диаметром 2 мм и длиной, равной утроенной высоте бетонного образца. Проволоку очищают от ржавчины, окалины и загрязнений и обезжиривают ацетоном, затем сгибают в скобки, чтобы параллельные участки проволоки отстояли друг от друга на расстоянии (30±5) мм. 7.2.3 Бетонную смесь для образцов готовят согласно заданной рецептуре и технологии исследуемого бетона. Максимальный размер зерен крупного заполнителя при изготовлении образцов размерами 70х70х210 мм равняется 10 мм, при изготовлении образцов размерами 100х100х300 мм - 20 мм. Зерна большего размера из бетонной смеси удаляют. 7.2.4 В каждый образец устанавливают по четыре стальных электрода. Два электрода устанавливают на расстоянии 10 мм от торцов образца и два электрода - на расстоянии, равном 1/3 длины образца от торцов. Электроды погружают в бетонную смесь строго в вертикальном положении свободными концами на глубину, меньшую высоты образца на (10±2) мм, так, чтобы плоскости скоб были параллельны друг другу. 7.2.5 Образцы твердеют в тех же условиях, что и исследуемый бетон. Испытания проводят после набора бетоном проектной прочности или в любом другом заданном возрасте в зависимости от задачи исследования. Перед измерениями образцы насыщают дистиллированной водой. 7.2.6 Образцы могут быть также выпилены из бетона конструкции. В этом случае в образцах на указанном расстоянии от торцов высверливают отверстия диаметром 3 мм, заполняют цементным тестом нормальной густоты и вдавливают электроды. 7.3 Аппаратура и материалы 7.3.1 Измерения на образцах из бетона проводят с помощью установки, показанной на рисунке 2. Рисунок 2 - Установка для измерения электрического сопротивления образцов из бетона
Рисунок 3 - Установка для измерения электрического сопротивления водной вытяжки из бетона
7.3.2 Применяют следующие приборы: 7.4 Проведение испытаний 7.4.1 Образцы в течение 3 сут насыщают дистиллированной водой, повышая уровень воды на 1/3 высоты образца каждые сутки. На третьи сутки верх бетонного образца должен возвышаться над водой на 2-3 мм. 7.4.2 Образцы последовательно извлекают из воды, осушают поверхность бетона влажной тканью и немедленно устанавливают на подкладки из электроизоляционного материала (трубки из стекла или полимерного материала). Измеряют разность потенциалов , В, между средними электродами в отсутствие тока. 7.4.3 Подключают источник тока и последовательно соединенный с ним микроамперметр к крайним электродам. Регулируя значение тока источника, устанавливают разность потенциалов между средними электродами в пределах от 10 до 15 В и измеряют значение тока в цепи. 7.4.4 С помощью штангенциркуля измеряют с точностью до 0,1 мм высоту и ширину образца и расстояние между средними электродами . 7.4.5 Один из параллельных образцов, не имеющих электродов, высушивают до постоянной массы и дробят до полного прохождения через сито с размером ячеек 0,63 мм. 7.4.6 Из дробленого материала образца отбирают четыре пробы массой (100±1), (40±0,5), (20±0,2), (10±0,1) г и засыпают в четыре стеклянные колбы. 7.4.7 В колбы заливают дистиллированную воду в количестве 100 см. Колбы герметично закрывают и оставляют на 72 ч, периодически взбалтывая. 7.4.8 Отстоявшуюся над осадком водную вытяжку, не взбалтывая, сливают через воронку с фильтром в установку (см. рисунок 3). Включают ток и устанавливают между средними электродами разность потенциалов , равную (5±0,5) В. Измеряют значение тока в цепи. 7.5 Обработка результатов испытаний 7.5.1 По полученным результатам рассчитывают удельное электрическое сопротивление , Ом·см, бетона по формуле , (9)
, (10)
7.5.2 Удельное электрическое сопротивление водной вытяжки рассчитывают по формуле . (11)
, (12)
7.5.3 По полученным результатам строят график в координатах "соотношение вода - бетон" - "электрическое сопротивление" и экстраполируют до точки, где "соотношение вода - бетон" равно нулю. По этой точке определяют электрическое сопротивление жидкой фазы в бетоне (см. рисунок 4). Рисунок 4 - Оценка электрического сопротивления водной вытяжки из бетона
7.5.4 Рассчитывают эффективную сквозную пористость бетона по формуле , (13)
7.5.5 Рассчитывают коэффициент диффузии хлоридов в бетоне по формуле , (14)
7.5.6 Статистическую оценку результатов испытаний проводят по ГОСТ 8.207. 7.6 Протокол испытаний 8 Электрохимические методы определения пассивирующего действия бетона по отношению к стальной арматуре8.1 Общие положения 8.1.1 Настоящие электрохимические методы устанавливают способы ускоренного определения и критерии оценки защитного действия бетона по отношению к стальной арматуре. 8.1.2 Настоящие методы определения не распространяются на бетоны, содержащие в своем составе частицы, обладающие электропроводностью и способные образовывать со стальной арматурой гальванические пары (частицы угля, стальная фибра, шунгит и другие). 8.1.3 Настоящие методы определения основаны на оценке пассивирующего действия бетона по отношению к стальной арматуре и получении зависимости плотности электрического тока от электрического потенциала стальной арматуры (потенциодинамический метод) или значения потенциала стальной арматуры в бетоне от плотности тока (гальванодинамический метод) и сравнении полученных результатов с установленными критическими значениями. 8.1.4 Электрохимический метод рекомендуется применять для: 8.2 Образцы 8.2.1 Бетонную смесь для образцов готовят согласно заданной рецептуре и технологии исследуемого бетона. Если бетонная смесь содержит зерна заполнителя размером более 10 мм, то их отделяют из бетонной смеси на сите с размером ячеек 10 мм. 8.2.2 Изготавливают девять стальных стержней длиной 120 мм, диаметром 3-6 мм. Поверхность стержней, включая торцы, шлифуют абразивной шкуркой до 7-го класса чистоты и перед заделкой в бетон обезжиривают ацетоном. 8.2.3 Из бетонной смеси формуют образцы размерами 40х40х160 мм или 70х70х140 мм. Изготавливают девять образцов со стержнями из арматурной стали и три неармированных образца. 8.3 Аппаратура и материалы 8.3.1 Для проведения измерений потенциодинамическим методом применяют: Рисунок 5 - Электрические схемы снятия потенциодинамических и гальванодинамических поляризационных кривых
1 - электрод сравнения; 2 - электролитический ключ; 3 - образец; 4 - вспомогательный электрод; 5 - микроамперметр; 6 - потенциостат; 7 - вольтметр; 8 - резистор; 9 - источник тока 8.3.2 Для проведения измерений гальванодинамическим методом применяют: 8.4 Проведение определения 8.4.1 Определения проводят после набора бетоном проектной прочности и далее через 3 и 6 мес испытаний в режиме переменного насыщения водой и высушивания. При измерении используют три параллельных образца. 8.4.2 Режим насыщения и высушивания устанавливают на неармированных образцах. Образцы взвешивают, помещают в питьевую воду и периодически (один раз в сутки), извлекая из воды, взвешивают. 8.4.3 Образцы с арматурой испытывают по установленному режиму. Образцы бетона с арматурой перед электрохимическими определениями насыщают питьевой водой. 8.4.4 На каждом образце проводят только одно измерение. Перед измерением откалывают бетон у торца образца так, чтобы арматурный стержень был обнажен на длине (20±10) мм. Прилежащую к обнаженному стержню поверхность бетона шириной (10±5) мм и выступающую из бетона поверхность стального стержня шириной (10±5) мм окрашивают лакокрасочным материалом или мастикой, обладающими высоким электрическим сопротивлением. 8.4.5 Подготовленный образец устанавливают в емкость с питьевой водой так, чтобы верх бетонного образца возвышался над водой на 2-3 мм (см. рисунок 5). Измерение электрохимических характеристик необходимо проводить при температуре воды (25±5) °С. 8.4.6 Измерение тока в микроамперах потенциодинамическим способом [см. рисунок 5а)] проводят через (60±5) мин после включения потенциостата. Снимают анодную часть поляризационной кривой со скоростью изменения потенциала 50 мВ/мин до потенциала плюс 1000 мВ с регистрацией силы тока через каждые 50 мВ. 8.4.7 Измерения гальванодинамическим способом [см. рисунок 5б)] проводят на образце путем регистрации значения потенциала в милливольтах с помощью вольтметра. Гальванодинамические характеристики на образцах получают при изменении силы тока ступенями 1; 2; 4; 8; 16; 30; 60; 120; 250; 500; 1000; 2000 мкА. 8.4.8 По завершении испытаний ток выключают и определяют значение потенциала через (60±5) с после отключения тока. 8.4.9 После электрохимических испытаний стальные электроды извлекают из бетона и определяют наличие или отсутствие коррозионного поражения. 8.5 Обработка результатов 8.5.1 Площадь рабочей поверхности стального стержня, соприкасающуюся с бетоном, , см, рассчитывают по формуле , (15)
8.5.2 Рассчитывают плотность тока , мкА/см, при каждом фиксированном значении потенциала по формуле , (16)
8.5.3 По полученным результатам строят график (поляризационную кривую) в координатах: по оси абсцисс - плотность тока , мкА/см, по оси ординат - потенциал рабочего электрода , мВ. 8.5.4 Коррозионное состояние стальной арматуры в бетоне оценивают по показателям, приведенным в таблице 2.
8.6 Протокол испытаний 9 Коррозионные испытания стальной арматуры в бетоне9.1 Общие положения 9.1.1 Метод коррозионных испытаний стальной арматуры в бетоне является прямым методом и устанавливает характер коррозионных поражений стали в бетоне и массу корродированной стали. Метод распространяется на стальную арматуру и бетоны, приготовленные на цементе на основе портландцементного клинкера, в том числе бетоны, содержащие в своем составе частицы, обладающие электропроводностью и способные образовывать со стальной арматурой гальванические пары (частицы угля, примеси металла в золе и шлаке, стальная фибра, шунгит и др.). 9.1.2 Метод коррозионных испытаний основан на оценке характера и степени коррозионного поражения стальной арматуры при хранении образцов в условиях переменного увлажнения и высушивания и сравнении полученных результатов с установленными критическими значениями. 9.1.3 Метод коррозионных испытаний стальной арматуры в бетоне применяют для определения способности бетона защищать стальную арматуру от коррозии в чистой влажной атмосфере при обычном содержании в воздухе углекислого газа. Метод не распространяется на испытания стальной арматуры в бетоне в атмосфере, содержащей повышенное количество углекислого газа, а также в присутствии других агрессивных газов и аэрозолей. 9.2 Образцы 9.2.1 Готовят 18 стальных стержней диаметром 4-6 мм и длиной (100±2) мм для образцов размерами 70х70х140 мм и длиной (140±2) мм - для образцов размерами 100х100х200 мм. Стержни маркируют, выбивая на их поверхности номера образцов. Поверхность образцов, включая торцы стержня, шлифуют абразивной шкуркой до 7-го класса чистоты и перед укладкой в бетон обезжиривают ацетоном. Образцы взвешивают с точностью до 0,001 г. 9.2.2 Бетонную смесь для образцов готовят согласно заданной рецептуре и технологии исследуемого бетона. Из смеси формуют образцы размерами 70х70х140 мм или 100х100х200 мм. Размер зерен крупного заполнителя при изготовлении образцов размерами 70х70х140 мм должен быть не более 10 мм, при изготовлении образцов 100х100х200 мм - не более 20 мм. Более крупные зерна из бетонной смеси удаляют. 9.2.3 Из бетонной смеси формуют три образца без стержней и девять образцов, каждый из которых с двумя стержнями из арматурной стали. Стержни устанавливают на растворные призмы, изготовленные из цементно-песчаного раствора того же состава, что и растворная часть испытуемого бетона. В образцах размерами 70х70х140 мм толщина защитного слоя бетона должна быть (20±2) мм, в образцах размерами 100х100х200 мм - (30±2) мм. 9.2.4 Изготовленные бетонные образцы твердеют в условиях, соответствующих условиям твердения испытуемого бетона. 9.3 Аппаратура и материалы 9.4 Проведение испытаний 9.4.1 По истечении 28 сут твердения образцы испытывают в режиме переменного увлажнения и высушивания в течение 3 и 6 мес. 9.4.2 Режим насыщения и высушивания - по 8.4.2. 9.4.3 Через 28 сут после изготовления, а также через 3 и 6 мес хранения в условиях насыщения и высушивания извлекают из бетона по три образца и оценивают характер коррозионного поражения арматуры и массу образцов. 9.4.4 При описании характера коррозионного поражения фиксируют площадь коррозионного поражения в % общей площади поверхности, наличие налета и/или слоистой ржавчины, язвенного поражения, глубину коррозионного поражения. 9.4.5 Продукты коррозии и остатки цементного камня на поверхности стальных стержней удаляют травлением в течение (25±5) мин в 10%-ном растворе соляной кислоты с добавлением 1% ингибитора уротропина от массы соляной кислоты. После растворения продуктов коррозии стержни промывают дистиллированной водой и погружают на 5 мин в насыщенный раствор ингибитора нитрита натрия. Образцы извлекают из раствора, осушают поверхность фильтровальной бумагой и высушивают. 9.4.6 Одновременно с испытуемыми стержнями в травильный раствор укладывают три аналогичных предварительно взвешенных, не подвергавшихся испытаниям контрольных стержня. По завершении травления основных образцов контрольные образцы также промывают, погружают на 5 мин в насыщенный раствор нитрита натрия, осушают тканью, высушивают и взвешивают. 9.4.7 Измеряют глубину коррозионного поражения стали с помощью индикатора по ГОСТ 9696 с иглой или микроскопом МИС-11 по нормативному документу. При использовании индикатора глубину коррозионного поражения стали оценивают как разность показаний прибора при установке иглы на неповрежденную поверхность и участок с наибольшей глубиной поражения. 9.5 Обработка результатов испытаний 9.5.1 Рассчитывают площадь поверхности стального стержня, соприкасающуюся с бетоном , см, по формуле , (17)
9.5.2 Рассчитывают среднюю потерю массы контрольных образцов в процессе травления. Для этого рассчитывают среднюю разность массы контрольных стержней до и после травления. 9.5.3 По результатам взвешивания испытуемых образцов до и после испытаний определяют потерю массы образцов за время испытаний. Полученные результаты корректируют с учетом потери массы стержней при травлении кислотой. Для этого из рассчитанной потери массы основных образцов вычитают среднее значение потери массы контрольных образцов. 9.5.4 По результатам коррозионных испытаний делают заключение о защитном действии бетона по отношению к стальной арматуре. Бетон обладает защитным действием по отношению к стальной арматуре, если после 6 мес испытаний стальная арматура не имеет на поверхности налета ржавчины и коррозионных язв, а потеря массы не превышает 10 г/см (10 г/м). 9.5.5 Статистическая оценка результатов испытаний - по ГОСТ 8.207. 9.6 Протокол испытаний 10 Метод определения стойкости арматурной стали к коррозионному растрескиванию10.1 Общие положения 10.1.1 Метод определения стойкости арматурной стали к коррозионному растрескиванию предназначен для использования при разработке новых видов арматуры, арматурных сталей, длительное время хранящихся на складах, образцов арматуры, отобранных при обследовании эксплуатируемых сооружений. Настоящий метод может быть применен для целей сертификации арматуры. 10.1.2 Данный метод основан на выдержке нагруженных постоянной изгибающей нагрузкой образцов в горячем растворе нитрата кальция и нитрата аммония и определении времени до их разрушения. 10.2 Отбор и подготовка образцов 10.3 Аппаратура Рисунок 6 - Схема установки для испытаний арматуры на стойкость к коррозионному растрескиванию в условиях изгиба
1 - нагревательный элемент; 2 - плита с отверстиями для крепления испытуемого образца; 3 - рама для жесткой подвески плиты и устойчивости установки; 4 - испытуемый образец; 5 - емкость для коррозионного раствора; 6 - дозатор воды; 7 - рычаг; 8 - груз 10.4 Материалы, реактивы и растворы 10.5 Проведение испытания 10.5.1 Испытания проводят в растворе при температуре 98 °С - 100 °С. 10.5.2 Требуемый изгибающий момент , Н·м, вычисляют по формуле , (18)
, (19)
10.5.3 Значение действующей силы , Н, вычисляют по формуле , (20)
10.5.4 Необходимую массу груза , кг, вычисляют по формуле , (21)
10.5.5 В течение испытания с помощью автоматического устройства регистрируют время до разрушения испытуемого образца. Если в течение 200 ч разрушение образца не происходит, испытания прекращают. Такая арматурная сталь считается стойкой к коррозионному растрескиванию. 10.5.6 Статистическую оценку результатов испытаний проводят по ГОСТ 8.207. 10.5.7 В соответствии с ГОСТ 10884 (см. приложение Б) арматура, выдержавшая более 100 ч испытаний при напряжении 0,9, считается стойкой против коррозионного растрескивания. 11 Методы определения свойств защитных покрытий на бетонеНастоящие методы устанавливают определение свойств защитных покрытий (лакокрасочных тонкослойных, лакокрасочных толстослойных (мастичных), пропиточно-кольматирующих на органополимерной основе, пропиточно-кольматирующих на цементно-полимерной основе и др.), применяемых для вторичной защиты бетонных и железобетонных строительных конструкций. 11.1 Метод определения трещиностойкости покрытий на бетоне11.1.1 Сущность метода 11.1.2 Образцы 11.1.2.1 Для проведения испытаний изготавливают образцы размерами 145x95x25 мм из цементно-песчаного раствора состава 1:3 с водоцементным отношением 0,5. 11.1.2.2 Образцы изготавливают в специальной сборно-разборной форме. В средней части образца, снизу и по бокам должно быть предусмотрено ослабление сечения за счет треугольных выемок на половину толщины образца [см. рисунок 7а)]. Рисунок 7 - Общий вид образца для определения трещиностойкости
1 - бетонный образец; 2 - защитное покрытие 11.1.2.3 Формование образцов проводят по ГОСТ 10180. 11.1.2.4 Образцы в течение 1 сут выдерживают в формах, затем освобождают от форм и хранят 6 сут в камере влажного хранения при относительной влажности не менее 90% и температуре воздуха (20±5) °С и 21 сут при температуре (20±5) °С и относительной влажности воздуха (65±5)%. 11.1.2.5 Для испытания изготавливают три образца для одной системы покрытия. 11.1.2.6 Перед нанесением системы покрытия поверхность образцов должна быть ровной, очищена от цементного молока и обеспылена. Содержание влаги в поверхностном слое бетона и температурные условия в процессе нанесения и твердения покрытия определяют согласно требованиям нормативных документов на систему покрытия. 11.1.2.7 Испытуемое покрытие наносят в средней части верхней поверхности образца ровной полосой вдоль всей длины образца шириной до 60 мм, оставляя по бокам неокрашенные участки бетона для наблюдения за появлением трещины. 11.1.2.8 Образцы с системой покрытия выдерживают в помещении при температуре воздуха (20±5) °С и относительной влажности (65±5)% в течение срока, предусмотренного нормативными документами на систему покрытия. 11.1.3 Аппаратура и материалы 11.1.3.1 Для проведения испытаний используют прибор для определения трещиностойкости покрытий на бетоне. Схема прибора представлена на рисунке 8. Рисунок 8 - Схема прибора для определения трещиностойкости покрытия
11.1.3.2 Для наблюдения за раскрытием трещин в бетонном образце и состоянием покрытия применяют оптический микроскоп типа МПБ. 11.1.4 Проведение определения 11.1.4.1 До начала определения подвижный захват прибора 3 перемещают к неподвижном захвату 4 до упора. Ослабив зажимной винт 7 вращением наружного цилиндра 6, нулевую отметку шкалы совмещают со шкалой на внутреннем цилиндре 5. 11.1.4.2 Испытуемый образец вставляют в прибор, после чего, ослабив зажимной винт, вращают наружный цилиндр 6 растягивающего механизма до ликвидации зазора между образцом и губками захватов и появления трещины в бетоне под покрытием. Далее вращают наружный цилиндр растягивающего механизма 6 до нарушения целостности покрытия. Скорость перемещения подвижного зажима должна быть (20±5) мм/мин. Трещиностойкость покрытия определяют по сумме показаний внутреннего 5 (целое число миллиметров) и наружного 6 (сотые доли миллиметра) цилиндров. 11.1.4.3 Состояние покрытия над трещиной в процессе ее раскрытия оценивают по сплошности пленки при помощи оптического микроскопа типа МПБ. С момента образования трещин на неокрашенных краях образца измеряют ширину трещин на поверхности бетона и описывают изменение состояния покрытия при их раскрытии через каждые 0,01 мм до начала нарушения целостности покрытия. 11.1.5 Обработка результатов определения 11.1.5.1 За значение трещиностойкости покрытия на бетоне принимают ширину раскрытия трещин в бетоне, мм, предшествующую появлению признаков разрушения покрытия. 11.1.5.2 За результат определения трещиностойкости принимают среднее значение минимальных значений раскрытия трещин в бетоне, измеренных на каждом из образцов. 11.1.5.3 Статистическую оценку результатов испытаний проводят по ГОСТ 8.207. 11.1.6 Протокол определения - дату и место проведения испытаний; 11.2 Метод определения водонепроницаемости бетона с покрытиями11.2.1 Сущность метода 11.2.2 Образцы 11.2.2.1 Для проведения определения изготавливают образцы из бетонной смеси с системой покрытия и без покрытия. 11.2.2.2 Определение проводят на шести образцах с одной системой покрытия (основные) и шести образцах без покрытия (контрольные). 11.2.2.3 Состав бетонной смеси и условия твердения назначают в зависимости от целей. 11.2.2.4 Формование образцов проводят по ГОСТ 10180. 11.2.2.5 Высоту образцов в зависимости от наибольшей крупности зерен заполнителя допускается устанавливать в соответствии с таблицей 3.
11.2.2.6 В течение 28 сут образцы твердеют в камере влажного хранения при относительной влажности не менее 90% и температуре воздуха (20±5) °С. Перед испытанием незащищенные (контрольные) образцы выдерживают в помещении лаборатории в течение 1 сут. 11.2.2.7 Перед нанесением системы покрытия поверхность образцов должна быть ровной, очищена от цементного молока и обеспылена. Содержание влаги в поверхностном слое бетона и температурные условия в процессе нанесения и твердения покрытия определяют согласно требованиям нормативных документов на систему покрытия. 11.2.2.8 На нижнюю поверхность образцов наносят систему защитного покрытия. 11.2.2.9 Диаметр открытых торцевых поверхностей образцов - не менее 130 мм. 11.2.2.10 Испытуемые образцы с системой покрытия выдерживают в помещении с температурой воздуха (20±5) °С и относительной влажностью (65±5)% в течение срока, предусмотренного нормативными документами на материал покрытия. 11.2.3 Аппаратура и материалы 11.2.4 Проведение определения 11.2.4.1 Испытуемые образцы устанавливают в гнезда установки для испытаний и надежно закрепляют. Схема крепления образцов приведена на рисунке 9. Рисунок 9 - Схема крепления образцов в гнезда установки на водонепроницаемость
11.2.4.2 Схема определения водонепроницаемости образцов с покрытием при прямом и обратном давлении воды представлена на рисунке 10. Рисунок 10 - Схема испытаний образцов бетона с покрытием
_________________
11.2.4.3 Давление воды повышают ступенями по 0,2 МПа в течение 2-5 мин и выдерживают на каждой ступени в течение времени, указанного в таблице 4. Определение проводят до появления на верхней торцевой поверхности образца признаков фильтрации воды или мокрого пятна.
11.2.5 Оценка результатов определения 11.2.5.1 Водонепроницаемость каждого образца оценивают максимальным давлением воды, при котором еще не наблюдалось ее просачивание через образец. 11.2.5.2 Водонепроницаемость серии образцов с покрытием и без него оценивают максимальным давлением воды, при котором на четырех из шести образцах не наблюдалось просачивание воды (мокрое пятно). 11.2.5.3 Марку бетона по водонепроницаемости с покрытием и без него устанавливают по таблице 5. Таблица 5 - Максимальное давление воды и марка по водонепроницаемости
11.2.6 Протокол определения а) для бетона без защиты: б) для бетона с защитным покрытием: 11.3 Метод определения диффузионной проницаемости покрытия на бетоне для углекислого газа
11.3.1 Сущность метода 11.3.1.1 Метод определения диффузионной проницаемости покрытия на бетоне заключается в оценке коэффициента диффузии углекислого газа в покрытии в зависимости от толщины нейтрализованного слоя и количества углекислого газа, поглощенного бетоном с покрытием за определенный срок, на образцах, хранившихся в камере с повышенным содержанием углекислого газа. 11.3.1.2 Определение диффузионной проницаемости бетона с пропиточно-кольматирующими покрытиями проникающего действия и обработку результатов проводят методом в соответствии с разделом 6. 11.3.2 Образцы 11.3.2.1 Для проведения определения диффузионной проницаемости готовят образцы из бетона в форме куба, призмы, цилиндра или пластины, минимальный размер рабочей грани которых должен быть не менее 7 см, а толщина - не менее 3 см. 11.3.2.2 Определение проводят на шести контрольных образцах (без покрытия) и 12 образцах с одной системой защитного покрытия (шесть основных и шесть дополнительных образцов). 11.3.2.3 Состав бетонной смеси и условия твердения назначают в зависимости от целей эксперимента. 11.3.2.4 Формование образцов проводят по ГОСТ 10180. 11.3.2.5 Образцы, предназначенные для испытаний, выдерживают в камере влажного хранения при относительной влажности не менее 90% и температуре воздуха (20±5) °С в течение 28 сут. 11.3.2.6 Незащищенные (контрольные) образцы выдерживают в герметичном сосуде (эксикаторе). 11.3.2.7 Перед нанесением системы защитного покрытия поверхность образцов должна быть ровной, очищенной от цементного молока и обеспыленной. Содержание влаги в поверхностном слое бетона и температурно-влажностные условия в процессе нанесения и твердения покрытия определяют согласно требованиям нормативных документов на покрытие. 11.3.2.8 Систему защитного покрытия наносят на все грани бетонных образцов. 11.3.2.9 Образцы с системой покрытия выдерживают в помещении с температурой воздуха (20±5) °С и относительной влажностью (65±5)% в течение срока, предусмотренного нормативными документами на материал покрытия. 11.3.3 Аппаратура и материалы 11.3.3.1 Для проведения определения используют установку с автоматическим поддержанием концентрации углекислого газа (см. рисунок 1). 11.3.3.2 Установка должна иметь следующие постоянные параметры среды: концентрацию углекислого газа (10±5)% по объему, температуру (20±5) °С, относительную влажность (75±3)%. 11.3.3.3 Для определения глубины карбонизации бетона применяют фенолфталеин и этиловый спирт по ГОСТ 18300. 11.3.3.4 Для поддержания заданной относительной влажности среды используют хлористый натрий по ГОСТ 4233. 11.3.4 Проведение определения 11.3.4.1 В установленную в камере ванну заливают насыщенный раствор хлористого натрия и дополнительно насыпают кристаллический хлористый натрий так, чтобы часть кристаллов находилась выше уровня раствора. 11.3.4.2 Образцы с покрытиями устанавливают на этажерку в камеру, закрывают камеру и включают вентилятор. Образцы выдерживают в камере при относительной влажности воздуха (75±3)% и температуре (20±5) °С до установления постоянной массы. 11.3.4.3 Включают подачу углекислого газа в камеру и автоматический газоанализатор, устанавливают концентрацию углекислого газа в камере (10±0,5)%. 11.3.4.4 Образцы выдерживают в камере не менее 30 сут и не более времени, в течение которого образец будет нейтрализован не более чем на толщины. Для этого часть дополнительных образцов периодически извлекают из камеры и определяют глубину их нейтрализации. 11.3.4.5 По истечении заданного срока основные образцы раскалывают в направлении, нормальном рабочей грани. На поверхность скола наносят 0,1%-ный раствор фенолфталеина в этиловом спирте. В качестве рабочей грани используют верхнюю или нижнюю сторону образца в зависимости от того, на какую сторону проектируемой железобетонной конструкции воздействует агрессивная среда. 11.3.4.6 Мерной линейкой измеряют с точностью до 0,1 см толщину нейтрализованного слоя бетона, которая равна расстоянию от поверхности образца до слоя, окрашенного раствором фенолфталеина в малиновый цвет. Измерения проводят через 1 см по периметру скола бетона. 11.3.4.7 Из испытанных к среде углекислого газа образцов и контрольных образцов, хранившихся в эксикаторах, отбирают пробы бетона массой (50±10) г. Пробы отбирают из слоя толщиной, превышающей на 1 см толщину нейтрализованного слоя бетона. Число проб, отобранных из образцов, хранившихся в среде углекислого газа, должно быть не менее трех. Из образцов, хранившихся в эксикаторе, также отбирают не менее трех проб. Химическим анализом по ГОСТ 22688 определяют количество связанного углекислого газа во всех пробах и результаты для каждого слоя усредняют. 11.3.5 Обработка результатов определения 11.3.5.1 По результатам химического анализа проб бетона определяют количество связанного углекислого газа в образцах с покрытиями, испытанных в газовой среде, в расчете на 1 см поверхности образца , г/см, и количество связанного углекислого газа в образцах, не подвергавшихся испытаниям в газовой среде , г/см. Количество углекислого газа, поглощенного образцами за время испытаний в газовой среде , рассчитывают по формуле . (22) 11.3.5.2 Эффективный коэффициент диффузии углекислого газа в защитном покрытии рассчитывают по формуле , (23)
см/с. 11.3.5.3 Ориентировочные расчеты эффективного коэффициента диффузии углекислого газа в защитном покрытии без химического определения количества поглощенного углекислого газа выполняют следующим образом. Рассчитывают среднее значение толщины нейтрализованного слоя бетона , см, по формуле , (24)
, (25)
11.3.6 Протокол определения а) для бетона без защиты: б) для бетона с защитным покрытием: 11.4 Метод определения морозостойкости покрытий на бетоне
11.4.1 Сущность метода 11.4.2 Образцы 11.4.2.1 Для испытаний изготавливают образцы размером 100х100х100 мм или 70х70х70 мм из бетонной смеси с системой защитного покрытия. 11.4.2.2 Состав бетонной смеси и условия твердения назначают в зависимости от целей эксперимента. 11.4.2.3 Формование образцов проводят по ГОСТ 10180. 11.4.2.4 В течение 28 сут образцы твердеют в камере влажного хранения при относительной влажности не менее 90% и температуре воздуха (20±5) °С. 11.4.2.5 Перед нанесением системы защитного покрытия поверхность образцов должна быть ровной, очищена от цементного молока и обеспылена. Содержание влаги в поверхностном слое бетона и температурно-влажностные условия в процессе нанесения и твердения покрытия определяют согласно требованиям нормативных документов на покрытие. 11.4.2.6 Для испытаний изготавливают 16 образцов с одной системой покрытия, из них 15 основных образцов и один контрольный образец. 11.4.2.7 Систему защитного покрытия наносят на все грани образцов. 11.4.2.8 Образцы с системой покрытия выдерживают в помещении с температурой воздуха (20±5) °С и относительной влажностью (65±5)% в течение времени, предусмотренного нормативными документами на материал. 11.4.3 Аппаратура и материалы 11.4.3.1 Для проведения испытаний используют морозильную камеру, обеспечивающую достижение и поддержание температуры не более минус (50±5) °С. 11.4.3.2 Для приготовления рабочего раствора применяют хлористый натрий по ГОСТ 4233, воду по ГОСТ 23732. 11.4.3.3 Для проведения испытаний используют: 11.4.3.4 Для размещения емкостей с образцами в морозильной камере используют сетчатый стеллаж. 11.4.3.5 Для оценки внешнего вида образцов применяют лупу с увеличением от 4 до 10 по ГОСТ 25706. 11.4.4 Проведение определения 11.4.4.1 На трех основных образцах с системой покрытия в исходном состоянии определяют адгезию в соответствии с ГОСТ 28574. Один контрольный образец с покрытием хранят при температуре 15 °С - 30 °С и относительной влажности воздуха не более 80% в течение всего времени испытаний. 11.4.4.2 Образцы перед испытанием погружают на 24 ч в 5%-ный водный раствор хлористого натрия при температуре (18±2) °С на 1/3 их высоты, затем уровень жидкости повышают до 2/3 высоты образца и выдерживают в таком состоянии еще 24 ч, после чего образцы полностью погружают в жидкость на 48 ч, чтобы уровень жидкости был выше верхней грани образцов не менее чем на 20 мм. 11.4.4.3 Для проведения испытаний образцы помещают в емкость, заполненную 5%-ным водным раствором хлористого натрия на две деревянные прокладки, при этом расстояние между образцами и стенками емкости должно быть (10±2) мм, слой раствора над поверхностью образцов должен быть не менее 10 мм. 11.4.4.4 Раствор хлористого натрия в емкости для замораживания и оттаивания меняют через каждые 20 циклов. 11.4.4.5 Образцы помещают в морозильную камеру при температуре воздуха в ней не выше плюс 10 °С в закрытых емкостях так, чтобы расстояние между стенками емкостей и камеры было не менее 50 мм. После установления в закрытой камере температуры минус 10 °С ее понижают в течение (2,5±0,5) ч до температуры минус (50-55) °С и выдерживают (2,5±0,5) ч. Далее температуру в камере повышают в течение (1,5±0,5) ч до минус 10 °С и при этой температуре выгружают из нее емкости с образцами. 11.4.4.6 Число циклов испытаний образцов в течение 1 сут должно быть не менее одного. 11.4.4.7 Условное соотношение между числом циклов испытаний ускоренным методом, основанным на замораживании - оттаивании образцов в растворе соли, и морозостойкостью покрытия на бетоне устанавливают по таблице 6.
11.4.4.8 Состояние образцов оценивают после извлечения из емкости и выдержки в течение 1 сут при температуре (20±5) °С и влажности (65±5)%. 11.4.4.9 Оценку состояния образцов с покрытиями проводят в соответствии с ГОСТ 9.407 по появлению внешних изменений покрытия (растрескивание, выветривание, отслаивание, пузырение, меление и др.) на поверхности бетона, а также по изменению адгезионных свойств покрытия к бетону в соответствии с ГОСТ 28574. 11.4.4.10 Внешние изменения покрытия оценивают визуально без применения увеличительных приборов или с помощью лупы путем сравнения с контрольным образцом. 11.4.5 Обработка результатов испытаний 11.4.5.1 Статистическую оценку результатов определения проводят по ГОСТ 8.207. 11.4.5.2 За значение морозостойкости покрытия на бетоне принимают максимальное число циклов замораживания - оттаивания, которое выдержало покрытие без появления признаков разрушения. При этом адгезионные свойства покрытий не должны снижаться более чем на 35% исходного значения. 11.4.5.3 Морозостойкость серии образцов оценивают максимальным числом циклов замораживания - оттаивания, при котором на четырех из шести образцов не наблюдалось разрушения покрытия и снижения значения адгезии более чем на 35% исходного значения. 11.4.6 Протокол определения 11.5 Метод определения адгезии покрытий к бетону
Приложение А (справочное). Проведение испытаний бетона в растворах кислот. Общие положенияПриложение А А.1 Анализы по определению концентрации исходных и рабочих растворов кислот должны проводить специалисты, освоившие методы аналитической химии, с соблюдением всех требований по проведению лабораторных работ. А.2 Испытания образцов проводят в растворах кислот с показателем pH=2, 3, 4. А.3 Показатель . В разбавленных водных растворах сильных кислот (HCI, HNO, HSO) концентрация ионов водорода H практически равна концентрации этих кислот в растворах . Для растворов этих кислот концентраций 0,01, 0,001, 0,0001 (10,10,10) равен соответственно 2, 3, 4. , где - константа диссоциации кислоты . Например, для муравьиной кислоты 1,5·10. Растворы концентрации 0,1; 0,01; 0,001 имеют pH соответственно 2,4; 2,91; 3,41. А.4 Титрованные растворы готовят в соответствии с ГОСТ 25794.1 - ГОСТ 25794.3. Приготовление раствора кислоты заданной концентрации начинают с определения плотности концентрированной кислоты. По плотности рассчитывают количество (в граммах) концентрированной кислоты в 1 см раствора. Например, необходимо приготовить 18 дм раствора соляной кислоты с pH=2 (концентрация 0,01 моль/дм). А.5 Количество кислоты в приготовленном растворе определяют следующим образом. К определенному количеству раствора, отобранному пипеткой из общего объема раствора, в присутствии кислотно-основного индикатора постепенно из бюретки приливают титрованный объем основания (гидроксида натрия) до наступления точки эквивалентности (нейтрализации) по переходу цвета окраски индикатора. Количество кислоты, содержащееся в испытуемом растворе до испытаний и в процессе испытаний, определяют по объему титрованного раствора гидроксида натрия и . А.6 Растворы гидроксида натрия концентрации 0,1 и 0,01 моль/дм готовят растворением 4 и 0,4 г NaOH в воде в мерной колбе вместимостью 1000 см. Добавлением воды доводят раствор до метки и перемешивают. Нормальность раствора гидроксида натрия определяют по раствору кислоты соответствующей концентрации, приготовленной из фиксанала. А.7 Титрование растворов слабых кислот с pH=2,4-2,7 (0,1 моль/дм) проводят раствором гидроксида натрия концентрации 0,1 моль/дм при комнатной температуре. А.8 В качестве индикатора следует применять 2-3 капли раствора фенолфталеина. А.9 С точностью 0,2% раствором гидроксида натрия концентрации 0,01 моль/дм можно титровать растворы кислот с более 1·10. Приложение Б (справочное). Примеры расчета глубины разрушения бетона в растворах кислотПриложение Б Пример 1 - Образцы из бетона марок по водонепроницаемости W8 и W16 испытаны в течение 10 сут в растворе серной кислоты с 2(0,01 моль/дм). Состав бетона марки по водонепроницаемости W8 - Ц:П:Щ=1:1,3:2,6, В/Ц=0,42, Ц=450 кг/м, содержание СаО в цементе 62%. Состав бетона марки по водонепроницаемости W16 - Ц:П:Щ=1:1,2:2,4, В/Ц=0,32, Ц=495 кг/м, модификатора бетона МБ 10-01 - 15% массы цемента, содержание СаО в цементе 65%. см. Для бетона марки W16: см. Приложение В (справочное). Прогнозирование глубины карбонизации бетона и длительности карбонизации защитного слоя бетонаПриложение В Глубину карбонизации бетона за время в воздушной среде с концентрацией углекислого газа рассчитывают по формуле . (В.1) Глубину карбонизации бетона при концентрации углекислого газа в воздухе за время можно рассчитать, если получены следующие данные о результатах испытаний образцов в камере с повышенной концентрацией углекислого газа : глубина карбонизации бетона , см, продолжительность испытаний , с. Расчет выполняют по формуле . (В.2) Время карбонизации защитного слоя толщиной при концентрации углекислого газа в воздухе рассчитывают по формуле , (В.3)
см. Пример 2 - Рассчитывают глубину карбонизации бетона за 50 лет , если за 7 сут испытаний при концентрации углекислого газа 10% глубина карбонизации бетона равна 0,8 см: см. Приложение Г (справочное). Расчет поправки и постоянной прибора для определения коэффициента диффузии хлоридов в бетоне
Готовят раствор KCI концентрации 1 моль/дм, для чего 74,5 г х.ч. KCl по ГОСТ 4234 растворяют в 500 дм дистиллированной воды и добавлением воды доводят объем раствора до 1000 дм. . (Г.1) Делением удельного электрического сопротивления 1 н. раствора KCl, полученного из "Справочника химика" [2], на экспериментально полученное значение , рассчитывают значение поправки по формуле . (Г.2) Вычисляют постоянную прибора по формуле . (Г.3) Пример - Диаметр трубки прибора равен 1,40 см, расстояние между электродами 7 см, температура 23 °С, ток 1,35·10 А, разность потенциалов равна 0,052 В и 0,000 В, тогда Ом·см. Повторяют определение три раза и получают значения 8,466; 8,352; 8,869 Ом·см, в среднем 8,562 Ом·см. По справочнику находят, что раствор KCl концентрации 1 моль/дм при температуре 23 °С имеет удельное сопротивление 9,268 Ом·см. Значение поправки равно . Затем вычисляют значение постоянной прибора . Приложение Д (справочное). Расчет тока коррозии по поляризационной кривой
Ток коррозии рассчитывают по значению поляризационного сопротивления , рассчитанному для начального участка поляризационной кривой при смещении потенциала от установившегося значения не более чем на 10 мВ. , (Д.1)
, (Д.2)
Библиография
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
на главную карта сайт | новости документы о компании производство качество цены |